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The influence of a single inclusion on the stress state near an isolated crack has been 
investigated in a number of papers, to which there are references in [i]. 

According to fracture investigations, the inhomogeneity of real materials, which is prac- 
tically inevitable during metallurgical and technological treatment results in the formation 
of a large quantity of defects (cracks, inclusions, pores), which are used in further con- 
struction and are the focus of rupture. Hence, it is of considerable interest to investigate 
the mutual influence of cracks oriented chaotically or specifically and inclusions. 

The plane problem of elasticity theory is considered for an isotropic plane with circular 
holes filled with elastic washers from a foreign material soldered along the outline and 
weakened by rectilinear slots. The solution of this problem permits an estimate of the influ- 
ence of the mutual disposition of a system of cracks and inclusions on the criteron (stress 
intensity coefficient) of the beginning of crack growth. This problem is also of interest 
for the theory of rupture of composite materials. 

w Let there be a plane with circular holes of radius A (X < i) and centers at the 
points 

P,n=m(o ( m = O ,  -4- 1, • 2, . . . ) ,  0 ) = 2 .  

The circular holes are filled with washers of a foreign elastic material soldered along the 
outline. The isotropic plane is weakened by a periodic system of rectilinear slits, as shown 
in Fig~ i. The lips of the slits are free of external forces. The mean stresses a x = ax, 
Oy ay, Txy 0 (tension at infinity) hold in the plane. 

By virtue of the symmetry of the boundary conditions and the geometry of the domain oc- 
cupied by the medium, the stresses are periodic functions with the period ~. 

To solve the problem, a method developed for the solution of a periodic elastic problem, 
and a method [2, 3] for constructing explicit Kolosov-Muskhelishvili potentials corresponding 
to unknown normal displacements along the slits are combined in a natural way. 

Let N -- iT denote a self-equilibrated, symmetric system of forces relative to the co- 
ordinate axes, which act on the washer from the plane. Considering N -- iT to be expanded in 
a Fourier series on the washer outline I TI - %, we obtain 

oo 

N - - i T =  ~_~ Ague 2km,ImA21~=0. ( 1 . 1 )  

The functions #,(z), Ya(z), describing the stress--strain state of the inclusion, are analytic 
in the inner circle IT[ = I and can be represented by the series [4] 

- y: 
(~)D (Z) --~- ~ a2hz 2h, W2" o (z) = c2kz 2~, ( 1 . 2 )  

h=0 h=0 

where 

Ao A--2h (k = i ,  2, . . ) ;  a o=- -~ - ,  a 2 a =  ~ 

c2h ---- - -  (2k -~- 4_) A--2k--2 A2k+2 (k := 0, 1, .). 
~2A ~2k �9 " 

Lipetsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fizlki, No. i, pp. 
164-174, January-February, 1978. Original article submitted January 18, 1977. 
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The potentials r ~,(z) permit finding the relationship 

- -  " " = A l - -  •  ~ ,  A21~e2aio ~ XlA_2he--2hm, 2P1 te '~  (Uo -- ivo) "'o ~ + ~-~ 
h=t b.=t 

( 1 . 3 )  

where uo, v. are the appropriate displacements of points of the inclusion contour, and ~,, ~, 
are coefficients characterizing the material of the inclusions. To determine the still un- 
known quantities A2 k (k = 0, +i,...), let us examine the solution for a plane. We see the 
complex potentials @(z), ~(z) in the plane in the form 

�9 (z) = ~ l ( z )  + q~,(z), ~I' (z) = ~t'1 (z) + ~ ( z ) ;  ( 1 . 4 )  

I ~ n (t--z~dt; q b , ( z ) = ~  g(t) c t g ~  , 

L (1.5) 

~z S s i n - ~ ( t - - z ) d t ;  ~1  (z) = - -  - ~ f  g (t) 

L 

t er ~ ~,,  ~2h+2p(2h) (Z) @~(z) ~-(~=+%)+%+..~2~+2 <2k+~), , 

1 oo '~I ~ 2h'4-2p(2k) ~-~ ),2h'4-2s(2k-- J) (z! 
~I;o (Z) "~ (Oy - -  (7~) + ~2h+2 " (Z) 

h=O n=O (2k -p 1)! 

(1.6) 

The integrals in (1.5) are taken over the line L = {[:-Z, --4"I] + [h, Z]}, 

2~ d 
g ( x ) - -  u + i  dx [h(x)], 

h(x) = v(x, +0) -- v(x, --0) on L [by virtue of symmetry h(x) = h(--x)], g(x) is the desired 
function, p(z) is a periodic function, and S(z) is a special meromorphic function [5]. 

An additional condition, resulting from the physical meaning of the problem 

- - h  l 

j" ~ (0  dt = o, f ~(t) dt = o (L.7) 

should be added to the relationships (1.4)-(1.6). 

Now, let us present the dependence which the coefficients of (1.6) should satisfy. There 
follows from the symmetry conditions for the stress state in a plane relative to the coordin- 
ate axes with the Kolosov--Muskhelishvili formulas taken into account 

r  = r  ~ ( - z )  = ~(z) ,  ~(~) = ~(~) ,  ~ ( - z )  = ~(z) .  
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We hence find 

Im~s~=Im~s~, ~=i, 2, ... (I.8) 

It can be seen that (1.4)-(1.6) determine~e class of symmetric problems with a periodic 
stress distribution. 

From the condition that the principal vector of all the forces acting on the arc con- 
necting two congruent points is D is constant there follows 

=o = ~ P~' ( I .  9) 

The unknown function g(x) and the constants e~k, 8ak should be determined from the boundary 
conditions 

4) ('~) § # (~) --  5(I)' ('~i + Y (~)] e~m = ~ A~e~m; (1 .10)  

o( t )  + eCt) -~ ic)'ct) + ~,(t) = o, 

where T ~le i+mm, m = 0, i, 2, ...; and t is the affix of points of the edges of the 
slits. 

To form the equations in the coefficients ezk, 82k of the functions @2(z), ~2(z) we 
represent the boundary condition (i.i0) in the form 

( l . l l )  

(I), ('~) -~- (I)s ('r) -- [~(I)2 (T) -~- ~ ('{)] e 21e - : /1  (0) -~- i/2(8) -~- ~ A2ke 2aie, (1 .12)  

where 

h (e) + q~ (e) = - r (~) - r (~) + [~r (~) + ~ (~)] e ~  ( 1 . 1 3 )  

Relative to the function f,(8) + if2(8) we consider it to be expanded in a Fourier series in 
IT[ ffi ~. By virtue of symmetry, this series has the form 

f~(8)+ff~(8)= ~ B2~e 2k~e, ImB2k=0, 
h~--0o 

2~ (1.4) 

B2k=-g-ff (h+q,)e-2klede ( k = O ,  -4-t, -4-2 . . . .  ). 
0 

S u b s t i t u t i n g  ( 1 . i 3 )  h e r e  and  i n t e r c h a n g i n g  t h e  o r d e r  o f  t h e  i n t e g r a t i o n ,  we f i n d  a f t e r  h a v i n g  
e v a l u a t e d  t h e  i n t e g r a l s  b y  u s i n g  r e s i d u e s  

i S B2a = - -  ~ g ( t ) / ~  (t) dt .  ( 1 . 1 5 )  
L 

The functions f2k(t) are determined for c = i by the relationships 

h~. (t) - 

~2 
/o (t) ---- (l q- s) ? (t), /2 (t) = - -  _~. ?(2) (t), 

~2k--2 
?(2k)( t )+ 3)I ~(2k-2)(t) (k----2,3,  ) ,  (2k)! (2k-- "" 

~2k ?(2k)(t) ( k = l , 2 ,  ), f -2k( t )  = ~ . . .  

? (t) = ctg ~--- t 
O) " 

(1.16) 

Substituting their expansions in Laurent series in the neighborhood of z = 0 [5] instead 
of ~2(T), ~2(~), @~(r), and ~2(T) in the left side of the boundary condition (I.12), and the Fourier 
series (1.14) instead of f, + if2 in the right side of (1.12), and equating coefficients of identi- 
cal powers of e Iv, we obtain two infinite systems of linear algebraic equations in the coef- 
ficients azk, 82k. After certain manipulations, we arrive [6] at an infinite system of lin- 
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ear algebraic equations in aak 

~z21+2 ~ ~ a],h~z2h+2 --I- b1 
h=o 

(j = 0, ~, 2 . . . .  ), ( 1 . 1 7 )  

where ~ = 1 in (1.17). 

Because of their awkwardness, the coefficients aj,k, bj are not presented. Taking (1.3) 
into account, we write the condition of equality of the derivatives of the displacement in 
the plane and the washer on the contour ]z[ = % with respect to the arc 

- • (---~) + ~ (~) - iu  (x) + ~'(*)1 e~O = f(0), 

1-- • ~ Aoheehio ] ( 0 ) = - ~ t  A~ 2 -r- A ~he 2~m 
k = i  h = i  

(1.18) 

Let us represent the boundary condition (1.18) in the form 

- -  •162 (x) + ~ (~) --  [~O~ (x) + W~ (x)] e 2m = / ~  (0) + i]~ (0) + ] (0); ( 1 . 1 9 )  

f~ (0) + i/~ (0) = •  (~) - -  r  (~) + [ ~  (T) + Vx (x)] e 2m. ( 1 . 2 0 )  

Proceeding with the function (1.20) and theboundary condition (1.19) in exactly the 
same manner as had been done with (1.13) and (1.12), we obtain the system (1.17) to deter- 
mine the coefficients a2k+a for E = --~, in the right side of this system 

o o  o o  

A~ = Ao ----- (• - -  i) % + (~v A o (• -- l) ~ + Bo, 4 2~1 

Ai = A~ 

A'2h = A2k = ~ A2h + Bik, 

G y  - -  G x 
' ~ ' B2. 2 ~ a~ A~ -r 

A'--2k : AL2a = -- • ~ A--2k -. B--2k. 

The quantities B~k are determined by (1.15), and the functions f2k(t) in this formula are 
found from (1.16) for ~ = --• 

Using the method in [7], we obtain an infinite system of linear algebraic equations to 
determine the constants A2 k 

A2s+2 = s di.hA2h+2 + T 1 (] = 0, ] . . . .  ), ( 1 . 2 1 )  
h = 0  

as well as relationships permitting the coefficients a2k, A-2k, Ao to be found in terms of 
the A2k. Finally, by using the coefficients listed, the coefficients B2k are found in terms 
of the Aa k. The quantities dj, k and Tj in the system (1.21) are not presented because of 
their awkwardness. Requiring that the functions (1.4) satisfy the boundary conditions on 
the edge of the slit L, we obtain a singular integral equation in g(x) 

ctg -~  ( t  x )  dt -I- ~" .I' g (t) - -  H (x) = 0, 
L 

H (z) = 2d)~ (x) + x(I)2 (x) + T~ (x). 

(1.22) 

The relationships connecting a2k and B2k in terms of A2k, and the system (1.21) in com- 
bination with the singular equation (1.22) are the main equations of the problem wnich permit 
determination of the function g(x) and the coefficients a2k+=, B=k+=. 

Let us recall that the function H(x) as well as the systems (1.17) and (1.21) contain 
the coefficients B2k and B~ k which depend on the desired function g(t). The system (1.21) 
and equation (1.22) turn out to be related and should be solved jointly. 

By knowing the functions g(x), ~2(z), andV2(z), the stress-strain state of the plate can 
be found. By changing the stiffness ratio between the inclusion and the plane, all the ver- 
sions can be obtained, starting with a force-free circular hole and ending with an absolutely 
stiff inclusion. 
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We will have the formula 

K~ = -+- lira [W2g I z" c'i g (x)J, 

for the stress intensity coefficient K I [8] st the crack apex, where the upper sign istaken 
for c = h and the lower for c - Z. 

For h = X the behavior of the normal stresses depends on the kind of boundary conditions 
given along the outline of the circular holes. Two fundamental cases should herebe distin- 
guished. 

i. The hole is filled by an elastic core; i.e., the crack emerges on the boundary of 
the inclusion. In this case, the singularity at the terminus (x = h) depends [8, 9] on the 
Poisson ratio ua and the shear modulus ~, of the material of the inclusion. 

2, The hole is not at all filled. In the case under conslderatlon, the crack emerges 
on the surface of a hole free of external forces at one end x = h. In this case the stresses 
at the terminus x = h are hounded and have a singularity at the other end. 

If an expansion of the function ctg- z is used by taking into account that g(x) = 
--g(--x) and by using a change of variable~ then (1.22) can be given the standard form 

~ ~-------N- + ~ .  ~ (~) B (n, ~) d~ + g ,  (n) = 0, ( 1 . 2 3 )  

where 

p(z )  = g(t); H,(~I) = H (x); B(~],~) = - d ~ x . . g / + t ( T  l \2i+2 JuoAs; 

d = - f  

A 1--- [(2] -}- t)  ~- (2]+i)t.2.3(2/)(21--i) (u.~o) -~ "'" + (u~)i]. 

A method developed in [i0] is used to solve (i.23). We represen t the solution in the 
f o r m  = - n ' .  

The funct ioR Po(n) i s  rep laced  by a Lagrange i n t e r p o l a t i o n  polynomial cons t ruc ted  by 
means of ChehysheV nodes. Using the quadrature formulas 

i :i~ J iv ('0 a-~ i 2"-~" ~--U = nsinO po cosm(3vsinm8 ' 
- - I  v - - t  m ~ D  

i n 

i ~ t : o 
- -  p~B B = 01, T # ,  = Po = c o s  

--I ; ' = 1  
ft 

l n 0 

permits replacement of the fundamental equations by an infinite system of linear algebraic 
equations in the approximate values p~ of the desired function at the nodal points, as well 
as in the coeff~clents Ask- By using relationships connecting S2k and 8ak in terms of A2 k, 
the constants Uak, ~z k are hence eliminated from the expression H,(D). 

After having found the values of p~, the stress intensity, coefficient K I is determined 
by the following relationships: 

r . 2 ~ n ~v 

-- ~. 2n 
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n v 0 Ov 
K~= ~/ ~l(l-- ~) I__ V (_ l) pvctg_~. 2n ~,~ 

In the second case, when the crack emerges on the surface of a free hole, the solution 
of (1.23) is sought in the form 

t+11' 
p (n)  = ~ / y - ~ p .  (n). 

The quantities B2k are given this time by the formulas 

d 

and the stress intensity coefficient is determined by the relationship 

K~. :  V~l(1 - ~)~ i ( - - t ) ~ p ~  -" 

Computations were performed to realize the method elucidated numerically. The plate 
tension by the constant forces ~(~ = 0) in a direction perpendicular to the slit lines was 

investigated. It was assumed that n = 20 and 30, which corresponds to partitioning the in- 
terval into 20 and 30 Chebyshev nodes, respectively. The system (1.21) was truncated to five 
equations. The systems mentioned were solved by the Gauss method. The solutions agree to 
the accuracy of the sixth place. 

In the first case we have for the stress intensity coefficient 

= -TV-  V (t- K~ 
X2) 

M Y~ (~, h, l), 

K~ = ~7 V-g-7 V t - -  ~,~F2 (LI h, l). 

Results of computing the functions F~(k, h, l) and F2(k, h, Z) as the spacing h changes for 
the two limit cases of an absolutely stiff inclusion (values given in the numerator), and 
an absolutely flexible inclusion (holes not filled at all) are presented in Table I. The 
crack length was assumed constant Z -- h = 0.3 in the computations. For any elastic inclusion, 
the picture of the stress state will be intermediate between these two limit cases. The in- 
vestigation showed that taking account of the interaction between the system of cracks and 
inclusions increases the stress intensity coefficient significantly as compared with a single 
inclusion and an isolated crack. 

In the second case, when the crack emerges at one end x = h on the surface of a hole 
free of external forces, we have for the stress intensity coefficient 

TABLE i 

0,2 

0,3 

Fx(~,, h, l) 

F~(~, h, l ) 

0,2i [ 0,25 I 0,29 I 0,33 { 0,37 

0,243 0,5t9 0,650 0,7t7 0,762 
3,169 1.528 1,249 F t ~  t,101 
0,963 t,045 t,074 1,089 t,097 
t,723 1,542 1,454 I 1 ~  ] t,346 

] 0,I~1 [ O,t, 5 t O,,'r 

0,798 0,825 0,849 
t,069 t,051 t,042 
t,i04 t , i l2 IA23 
1,3i5 i t,295 i ~ ,295 

&(7. h, 0 

F2(L h, l) 

0,31 I 0,35 I 0,39 [ 0,43 0,47 I 0,5i 

6,948 l 2,553 1,-~-8 1 ~  t,329 t t,274 
0,894 [ 0,921 0,962 0,997 1,024 ] t,049 
2,-0V7 1 1 , ~  t,-~9 t,-~4 1,497 j t,469 

I 0,55 I fi,59 

0,797 I 0,83___4 
t,24t / t,225 
t,078 1 l ,ii7 
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TABLE 2 

0,15 
0,20 
0,25 
0,30 
0,35 
0,40 
0,45 
0,50 
0,55 
0,60 
0,65 
0,70 
0,75 
0,80 
0,85 
0,90 

0ot 

2,828 
2,420 
2,274 
2,2i8 
2,203 
2,213 
2,244 
2,286 
2,346 
2,427 
2,531 
2,667 
2,849 
3,099 
3,459 
4,0it 

0,2 

3,35i  

2,863 
2,622 
2,500 
2,445 
2,432 
2,452 
2,50i 
2,581 
2,696 
2,860 
3,094 
3,344 
3,969 

0,3 

3,666 
3,t99 
2,929 
2,789 
2,7i7 
2,699 
2,728 
2,804 
2,935 
3,i40 
3,457 
3,963 

i 

3,929 
3,486 
3,237 
3,095 
3,032 
3,039 
3,116 
3,276 
3,555 
4,027 

0.5 

4,233 
3,803 
3,586 
3,479 
3,469 
3,563 
3,789 
4,22t 

=@= =@= =I 
Lf/  
f I 

Fig. 2 

Results of computations for the function F3(~, ~) are given in Table 2. In contrast to the 
case of two cracks issuing from a single hole, the interaction between a system of cracks and 
holes results in the growth of the intensity coefficient as the crack length increases. 

2. Let there be a doubly periodic lattice with circular holes of radius ~(~ < i) and 
centers at the points 

Pmn = m~1 + n~2 (m, n = O, +__i, • 2 . . . .  ), 

~1 = 2, ~ = 2/ei% l > O ,  I m ~ 2 : > O .  

Circular holes of the lattice are filled by washers from a foreign elastic material soldered 
along the Outline. The lattice is weakened by a doubly periodic system of rectilinear slits 
as sho=wn in Fig~ 2. The edges of the slits are free of external forces. The mean stresses 
~ = ~ ay = ay, Txy = 0 (tension at infinity) hold in the lattice. 

By virtue of symmetry of the boundary conditions and the geometry of the domain D occu- 
pied by the medium, the stresses are doubly periodic functions with the fundamental periods 
ml and m2. 

To solve the problem, a method [7] developed to solve the doubly periodic elastic prob- 
lem is combined in a natural way with the method [2, 3, ii] of explicitly constructing the 
Kolosov--Muskhelishvili potentials corresponding to the unknown normal displacements along the 
slits. 
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Fig. 3 

We seek the complex potentials r and ~(z) in the lattice in the form (1.4), where 

agx(z)=2-  ~ g ( t ) ~ ( t - z ) d t + A ,  
L 

W~(z)---- ~ , f g ( t ) [ ~ ( t - -  z) + O ( t - -  z) - tV( t - -  z)]dt § B; 
L 

(2.1) 

oo oo ~ ~,2hT2y(2h) (z) t(,~ , ~ ) +  ~ + ~  q)~ (z) = -~- -r- ~ - (2k + t)l ' 
k=0 

t ~ oo 2 ~2h+2y(2h) (Z) ~./ ~2k+2Q(2k+i) (z) 
llf2 (g) --'-- "~ (Oy -- Gx ) ~- fi2h-{-2 (2k * I)! -- 052h+2 

k=o k~o (2k + t) ! 

( 2 . 2 )  

Here y(z) and ~(z) are Weierstrass functions; Q(z) is a special meromorphic function [7]; 
and A and B are constants. In the case under consideration the relationships (1.1)-(1.3), 
(1.7), and (1.8) remain valid. 

The condition of constancy of the principal vector of all forces acting on an arc con- 
necting two congruent points in D, with (1.7) and properties of the functions y(z), ~(z), and 
Q(z) at the congruent points taken into account, will result in the relationship 

(k = 1, 2), 

L 

(2.3) 

The notation for the constants of the doubly periodic lattice corresponds with that used in 
[7]. The constants A and B are determined from the system (2.3), where A and B are real. 

It can be seen that the functions (1.4), (2.1), and (2.2) determine the class of symmet- 
ric problems with a doubly periodic stress distribution under the condition(l.8). The un~ 
known g(x) and the constants a2k and B= k should be determined from the boundary conditions 
(i.IO), (i.Ii), where T = %e i8 + m~1 + nm2, m, n = 0, • • ... To obtain the fundamental 
equations of the problem, the discussion in Sec. 1 should be repeated. 

In this case 

B o = - - 2 A + B o ,  B ~ = B + B z ,  B:a = B i ~ ( k = - - j ,  + _ 2 , •  

B L  = - 2@ ~ g (0/~,~ (t) dr, io (t) = (J + ~) : (t), 
L 

h (t) = ~ V' (t) + t-~ (t) - ~ (t) - 0 (t), 
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(2k-- 1) ~2k ~2k--2 [7 (2k-3) (t) - -  

_ Q(2k-~) (t) + ty(2k-2)(t)l (k = 2, 3 , . . . ) .  

~z~ 7 ( ~ - ~  ( k = l ,  2, .). / -2k (t) = (2k}, " "  

The s i n g u l a r  i n t e g r a l  e q u a t i o n  has  t h e  form 

2"-~ g ( t ) K ( t - - x ) d t - - ,  H ( x ) = O  ai L,  
L 

where 

( 2 . 4 )  

K (x) = 3~ (x) + Q (x) - x7 (x); 

H (x) = 2A + B + 2~2(x ) + x$~(x)  + T~ (x); 

1 , ~ 2 )  (a~ ' ~ )  § (2a -§ ~2~ ~) 8~1, 2A + B = -g71~ [(a ~ 

and the system in Aa k formally remains (1.21) as before. Using the expansions of y(z) and 
~(z) and Q(z) in the fundamental period parallelogram [7], and also taking into account g[x) = 
--g(-x) and using a change of variable, we reduce (2.4) to the form of (1.23). 

Computations were performed to realize the method elucidated. The tension of a regular 
triangular lattice ~ = 2, m2 = 2e (I/a)i~ by the constant forces ~(o~ = 0) in a direction 
perpendicular to the slit lines was investigated. Values of the limit (rupturing) forces 
were determined as a function of the geometric and physical parameters of the problem. De- 
vendences of the critical load o, = ~(ml/~-~)/Klc on the distance h* = h--% for both ends of 
the crack (curve I corresponds to the left end) are shown in Fig[ 3 for % = 0.3 on the basis 
of the results obtained in the case of a stiff inclusion with v = 0.3. Shown for comparison 
by dashes is the dependence of o, in the absence of inclusions (the inclusion and lattice 
materials are identical) for the same crack geometry, calculated by the method described, 
while the dependence in the case of an absolutely flexible inclusion (the holes not filled 
at all) is shown by a dash-dot line. The picture of ~the stress state will be intermediate 
between these two limit cases for any elastic inclusion. An investigation showed that the 
mutual influence of the system of cracks and inclusions increases the stress intensity coef- 
ficient conslderahly as compared with a single inclusion and an isolated crack. In the case 
of cracks emerging at one end at the free surface of a circular hole (h = %), the stable de- 
velopment of a system of cracks (their mutual hardening) is observed for certain values of %. 
It is curious to note that there is no possibility of stabilizing crack development for a 
doubly periodic system of cracks with the same geometry but without circular holes (% = 0). 

The author is grateful to Yu. N. Rabotnov for useful discussions of the results obtained. 
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